博客
关于我
hdu2767(强连通分量+缩点)
阅读量:245 次
发布时间:2019-03-01

本文共 3084 字,大约阅读时间需要 10 分钟。

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 7367 Accepted Submission(s): 2547

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

  1. A is invertible.
  2. Ax = b has exactly one solution for every n × 1 matrix b.
  3. Ax = b is consistent for every n × 1 matrix b.
  4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
  • m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:

  • One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2
对整个图求一次强连通分量,如果强连通分量为1则直接输出0,否则进行缩点(啥叫缩点:我们求强连通分量时,给每个顶点做一个标记,标记该顶点属于哪个强联通分量,然后属于同一个强连通分量的点就可以看作同一个点了。这就是所谓的“缩点”)对整个图缩点后这个图就变成了有向无环图,假设这个有向无环图入度为零的点有a个,出度为零的点有b个,这结果为max(a,b)(这个结论可以画个图推一推)

#include 
using namespace std;const int N=20010;vector
> vec(N);int low[N],dfn[N],Stack[N],belong[N];bool InStack[N];int in[N],out[N];int Index,top,ans;void Tarjan(int u){ low[u]=dfn[u]=(++Index); Stack[top++]=u; InStack[u]=true; for(int i=0;i
low[v]){ low[u]=low[v]; } } else if(InStack[v]&&low[u]>dfn[v]){ low[u]=dfn[v]; } } if(low[u]==dfn[u]){ int v; ans++; do{ v=Stack[--top]; belong[v]=ans; InStack[v]=false; } while(v!=u); }}void init(int n){ for(int i=1;i<=n;i++){ vec[i].clear(); } memset(InStack,false,sizeof(InStack)); memset(belong,0,sizeof(belong)); memset(dfn,0,sizeof(dfn)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); Index=top=ans=0;}int main(){ int T; scanf("%d",&T); while(T--){ int n,m; scanf("%d %d",&n,&m); init(n); for(int i=0;i

转载地址:http://nnfx.baihongyu.com/

你可能感兴趣的文章
mysql共享锁与排他锁
查看>>
MySQL内存表使用技巧
查看>>
MySQL再叙(体系结构、存储引擎、索引、SQL执行过程)
查看>>
mysql出现错误的解决办法
查看>>
MySQL函数
查看>>
mysql函数汇总之字符串函数
查看>>
mysql函数汇总之数学函数
查看>>
mysql函数汇总之日期和时间函数
查看>>
mysql函数汇总之条件判断函数
查看>>
mysql函数汇总之系统信息函数
查看>>
MySQL函数简介
查看>>
mysql函数遍历json数组
查看>>
MySQL函数(转发)
查看>>
mysql分区表
查看>>
MySQL分层架构与运行机制详解
查看>>
mysql分库分表中间件简书_MySQL分库分表
查看>>
MySQL分库分表会带来哪些问题?分库分表问题
查看>>
MySQL分组函数
查看>>
MySQL分组查询
查看>>
Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间
查看>>